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Leakage errors take qubits out of the computational subspace and will accumulate if not addressed. A leaked

qubit will reduce the effectiveness of quantum error correction protocols due to the cost of implementing leakage

reduction circuits and the harm caused by interacting leaked states with qubit states. Ion trap qubits driven by

Raman gates have a natural choice between qubits encoded in magnetically insensitive hyperfine states that can

leak and qubits encoded in magnetically sensitive Zeeman states of the electron spin that cannot leak. In our

previous work, we compared these two qubits in the context of the toric code with a depolarizing leakage error

model and found that for magnetic-field noise with a standard deviation less than 32 µG that the 174Yb+ Zeeman

qubit outperforms the 171Yb+ hyperfine qubit. Here we examine a physically motivated leakage error model

based on ions interacting via the Mølmer-Sørenson gate. We find that this greatly improves the performance of

hyperfine qubits but the Zeeman qubits are more effective for magnetic-field noise with a standard deviation

less than 10 µG. At these low magnetic fields, we find that the best choice is a mixed qubit scheme where the

hyperfine qubits are the syndrome qubits and the leakage is handled without the need of an additional leakage

reduction circuit.
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I. INTRODUCTION

We have yet to discover the perfect qubit. Every known

qubit candidate comes with assets and liabilities. Recently,

there has been a growing interest in combining different qubit

types in an effort to amplify these desirable attributes and sup-

press the undesirable noise. Such mixed qubit architectures

look promising, addressing a wide range of issues such as

cooling, crosstalk, and leakage [1–7].

Qubits based on clock states are often favored in ion

trapped quantum computers [8–11]. Hyperfine qubits based

on clock transitions suffer from virtually no memory errors

because clock states have a second-order dependence on

magnetic field. However, there exist additional energy states,

resulting from Zeeman splittings, that are outside the defined

computational subspace. These energy states can be accessed

through leakage errors.

While we do not expect leakage to be a limiting error for

near term experiments, leakage is a fundamental error for

gates driven by lasers. Thus studying the effects of leakage

errors and tradeoffs between overhead of handling such errors

and mitigating their effects through design is worthwhile as

we moved toward designing large scale fault tolerant devices.

Leakage errors can manifest in two different ways, ei-

ther as detectable leakage (qubit loss) or undetectable leak-

age. Undetectable leakage errors are especially damaging. If

left untreated they corrupt data and render error correction

syndromes useless. Standard error correction schemes can

efficiently handle detectable leakage errors [12,13], but are

not adept at handling undetectable leakage errors. Additional

leakage reducing circuits (LRCs) are required to convert these

leakage errors into Pauli errors before they can be corrected

[14–16]. In this paper, we are concerned with only unde-

tectable leakage errors and throughout this discussion shall

refer to these errors simply as leakage errors.

Zeeman qubits are also viable candidates for ion trap quan-

tum computing [17–20]. While they suffer from a first-order

dependence on magnetic fields and thus have more dephasing

noise than hyperfine qubits, they have no additional energy

states that lead to leakage. Thus the tradeoff is clear: they

suffer more memory errors but do not suffer from leakage

errors.

In our previous work [21], we studied two specific types of

qubits: 171Yb+ hyperfine qubits and 174Yb+ Zeeman qubits.

We assessed the performance of a surface code built on each

type of qubit, comparing the two different error models: one

with leakage but no memory errors (hyperfine) and one with

large memory errors but no leakage (Zeeman). We found that

in certain magnetic-field regimes, the Zeeman qubit’s memory

error can be suppressed enough that a surface code built on

this type of qubit outperforms one built on a hyperfine system.

In this work, we study the performance of the surface code

on a mixed qubit platform. Using 171Yb+ hyperfine ions for

our syndrome qubits and 174Yb+ Zeeman ions for our data

qubits, we reduce the potential for leakage errors at the cost of

increasing memory errors. We simulate two different leakage

models: a worst case stochastic model in which leaked qubits

completely depolarize unleaked qubits they interact with and

a Mølmer-Sørenson model which captures the effects of leak-

age during a Mølmer-Sørenson gate. We find that in certain

magnetic-field regimes there is an improvement in the logical

error rate of the surface code compared to the performance on
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either a pure hyperfine or Zeeman system. A surface code built

on the mixed qubit architecture can effectively handle leakage

without the use of a LRC.

II. ATOMIC STRUCTURE OF Yb ISOTOPES

At the root of this study, we are investing the performance

of the surface code when the syndrome and the data qubits

have two very different error models. Since much of our work

relies on errors that are very specific to the atomic structure

of the qubits involved, we briefly outline the atomic structure

of the two ytterbium isotopes used in our simulation: 171Yb+

(I = 1/2) and 174Yb+ (I = 0).

The half integer nuclear spin of 171Yb+ gives the well-

known hyperfine splitting responsible for the clock states

|F = 0, mF = 0〉 and |F = 1, mF = 0〉 that are often used to

define a qubit. Because of their second-order magnetic-field

dependence, qubits based on this transition have virtually no

idle errors. At typical values of applied magnetic fields for

hyperfine qubits, the probability of a phase error for a hyper-

fine qubit is 10−3–10−4 times smaller than the probability of a

phase error for a Zeeman qubit [21]. However, there exists

additional energy states resulting from the Zeeman effect,

|F = 1, mF = −1〉 and |F = 1, mF = +1〉. So the computa-

tional space defining the qubit is smaller than that of the

physical system, leading to the possibility of leakage errors.
171Yb+ is a good example to study since the leakage space

is equal to the qubit space. The rate of leakage in and out

of the computational space will then be equal. Other ions

with a spin 1/2 nucleus will also benefit from this symmetry

(e.g., 133Ba+ [22]). Ions with larger spins, like 43Ca+, will

suffer from larger leakage rates due to the existence of a larger

leakage space [10].

By contrast, 174Yb+ has a zero nuclear spin. Thus the

only energy states in the S1/2 manifold are the two states

resulting from Zeeman splitting (|F = 1/2, mF = −1/2〉 and

|F = 1/2, mF = +1/2〉) and it is these states that define the

qubit. This offers both an advantage and a disadvantage. On

the one hand, since there are only two states available, there

is no possibility for leakage. On the other, these states have

a first-order dependence on magnetic field and thus will be

highly susceptible to dephasing errors caused by fluctuations

in the trap.

It is worth noting that, in each isotope, there exists higher-

level leakage states in the D and F manifolds, but these states

are quickly repumped back down to the ground state. The

decay rate is fast compared to the rate at which these levels

can be populated by spontaneous emission and are ignored in

our analysis [23,24].

III. ERROR MODEL

A. Sources of physical errors

Raman transitions are a leading candidate for gate imple-

mentations in ion trapped quantum computers. In the limit of

no technical noise, the main source of error will arise from

spontaneous scattering [25–29]. While spontaneous scatter-

ing does not favor any particular state, the atomic structure

will affect how the scattering manifests. Raman scattering

from these gates leaves the qubit in a different energy state.

Depending on the atomic structure of the qubits, this leads to

either Pauli X̂ or Ŷ type errors, or leakage errors. For hyperfine

qubits, half of this scattering will result in leakage whilst for

a Zeeman qubit all the scattering results in Pauli type errors

[21]. Rayleigh scattering from these gates leaves the qubit

in the same energy state but adds a phase. If the scattering

from the two qubit levels is approximately equal, the scat-

tering amplitudes can either destructively interfere leading to

negligible errors (as is the case for 171Yb+), or constructively

interfere, leading to significant dephasing errors (as is the case

for 174Yb+) [27–29]. In the latter case, the probability of error

resulting from Rayleigh scattering is approximately equal to

that of Raman scattering [21].

Another source of noise arises from magnetic-field fluctua-

tions in the trap. For the Zeeman qubit, the probability of error

arising from the first-order effect grows quadratically with

increasing field fluctuations. For the hyperfine qubit, the errors

arising from the second-order effect grow quartically. For

mean-field fluctuations of higher than 10−4 G, the probability

of error per two qubit gate resulting from first-order effects

is above 1% [21], the threshold error value of the surface

code [30–32]. However, even in these highly unstable fields,

the probability of errors from the second-order effect is well

below the threshold value [21]. The noise resulting from these

fields is significant for the Zeeman qubits and inconsequential

for the hyperfine qubits.

In our simulation, we vary the probability of scattering

while considering a static error arising from the magnetic

field. Based on the calculations of [21], we modeled the effects

of scattering with the error channels:

Eh(ρ) =

(

1 −
ps

2

)

ρ +
ps

8
X̂ρX̂ +

ps

8
Ŷ ρŶ +

ps

4
L̂(ρ),

(1)

EZ (ρ) = (1 − ps pM )ρ +
ps

4
X̂ρX̂ +

ps

4
Ŷ ρŶ +

ps pM

2
ẐρẐ,

(2)

L̂(ρ) =

1
∑

i=0

|L〉〈i|ρ|i〉〈L| +

1
∑

i=0

1

2
|i〉〈L|ρ|L〉〈i|, (3)

where Eh(ρ) and EZ (ρ) are the error channels for the hyperfine

and Zeeman qubits, respectively, ps is the scattering error

probability, pM is the magnetic-field error probability, and

X̂ , Ŷ , and Ẑ are the Pauli matrices. The full state space of

the system is acted on by X̂ ′, Ŷ ′, Ẑ ′, the direct-sum state

space between the computational subspace and the minimal

leakage subspace (i.e., X̂ ′ = X̂ ⊕ |L〉〈L|). We model leak-

age with Eq. (3), where |L〉 projects the qubit onto the

leakage subspace. Qubits are able to leak both in and out

of the computational subspace at the same rate. We only

consider a minimal leakage subspace as restricted by our

simulator.

Laser intensity, polarization, and detuning all have an influ-

ence on the spontaneous scattering rate for the ions. We expect

for one-qubit gates ps = 9.76 × 10−6 and two-qubit gates

ps = 2.52 × 10−4 based on calculations done assuming gates

driven by copropagating linearly polarized Raman beams with

a laser frequency of 355 nm and a two qubit gate time of

200 µs [21]. Under these parameters, spontaneous scattering
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is minimized. The Raman and Rayleigh scattering lead to

equal errors on the Zeeman qubit but the hyperfine qubit

experiences negligible decoherence due to Rayleigh scatter-

ing. This leads to hyperfine qubits having half the scattering

error due to the qubit subspace occupying half the physical

subspace. For a more detailed discussion of how these errors

manifest for the particular qubits, please refer to [21].

B. Leakage models

While our error model is motivated by the physical error

rates of the two ions considered, a more general view of

our model is a system with one-sided leakage. We defined

one-sided leakage as a system where only one qubit involved

in a controlled-NOT (CNOT) gate is physically able to leak. This

restriction could be because of a noise bias in the way a gate

is implemented [33] or, as in this case, because of the physical

qubits involved (i.e., one physically cannot leak). Because

one-sided leakage could model the behavior of different phys-

ical systems other than ion traps, we looked at two different

leakage models: depolarizing and Mølmer-Sørenson.

The depolarizing leakage (DP) model has been used in

numerous leakage simulations [15,16,21,34]. In this model,

when a leaked qubit interacts with an unleaked qubit via a

CNOT, the leaked qubit remains in the leaked state while the

latter is depolarized. This model is a worst-case stochastic

model which may be applied to a variety of systems including

superconductors [34] and quantum dots [35,36].

The second leakage model is specific to ion traps. It aims

to capture the effect of how a leaked qubit interacts in a

Mølmer-Sørenson (MS) gate [37]. The MS gate utilizes the

motion of the ion crystal to couple the ions together. Two

laser beams off resonantly detuned but close to the blue and

red sidebands drive the system causing both ions involved in

the gate to change their state collectively [38,39]. The qubit

transition is ideally driven by two lasers on opposite sides of

the carrier transition in a linear perpendicular configuration.

The MS gate does not generate entanglement between leaked

states and nonleaked states because the polarization between

the Raman beams is chosen to drive the specific qubit tran-

sition (|F = 0, mF = 0〉 and |F = 1, mF = 0〉), forbidding

other transitions. Even in the case of imperfect polarization,

the displacement on the ion is further suppressed due to the

shift of the Zeeman levels, leading to the sidebands both being

on the same side of the carrier transition. Because both lasers

are now on the same side, entanglement between the motional

degrees of freedom does not occur and the leaked ion will only

get weakly displaced. Thus when an MS gate is performed

with a leaked ion, no entanglement is generated [40].

The full CNOT gate involves several more single qubit gates

that still get applied whether or not the MS gate failed [41]. If

the control leaked, the target undergoes a X (−π/2) rotation.

If the target leaked, the control undergoes a Z (−π/2) rotation.

We simulate this by applying a Pauli-twirl approximation

which gives the channels

Ebit(ρ) = 1
2
ρ + 1

2
X̂ρX̂ , (4)

Ephase(ρ) = 1
2
ρ + 1

2
ẐρẐ, (5)

as used in [40]. We applied Ebit(ρ) to the target if the control

has leaked and Ephase(ρ) to the control if the target has leaked.

In our one-sided leakage model this translates to applying

Ebit(ρ) to our data qubits if a syndrome qubit has leaked during

our X stabilizer syndrome extraction or Ephase(ρ) to the data if

a syndrome qubit leaked during our Z stabilizer extraction.

We make several assumptions in both our leakage models.

First we assume that leakage is only caused by spontaneous

scattering from the gates and thus initialization of the qubit

does not cause leakage. Typically, ions are initialized using

optical pumping techniques which do not result in leakage.

This assumption has also been made in other leakage studies

[15]. Second, we assume that a leaked qubit has a proba-

bility to return to the computational subspace equal to the

probability that it leaked out. This is again motivated by

physical scattering events and has been modeled in several

other studies [15,16,21,40]. Finally, we assume a leaked qubit

remains leaked until it leaks back to the computational space

or is reinitialized.

IV. SURFACE CODE SIMULATION

Topological surface codes are a leading candidate for quan-

tum error correction (QEC), due to their high thresholds and

single syndrome extraction [30,42–45]. However, standard

topological codes alone are incapable of handling leakage

errors. If left unhandled, the performance of the surface code

suffers dramatically from the correlated errors produced from

a single leakage error [14–16,21,40]. Fortunately, Alferis and

Terhal showed that a threshold exists for the surface code in

the presence of leakage if one incorporates leakage reducing

circuits (LRCs) [14]. Typically, these LRCs involve teleport-

ing or swapping leaked qubits with an auxiliary qubit. While

LRCs are effective for reducing leakage, they come at a cost.

Implementing even the simplest LRC involves incorporating

more gates and thus adds more potential fault locations.

In a surface code, qubits are arranged on a lattice and func-

tion either as data qubits, which encode the information, or

syndrome qubits, which are used to measure error syndromes

(see Fig. 1). In the standard surface code, syndrome extraction

is accomplished by performing four CNOT gates between each

data and syndrome qubit and then measuring the syndrome

qubit (see Fig. 2). Minimum weight perfect matching is done

to infer the most probable error given the observed syndrome.

The surface code along with the decoding algorithm can detect

and correct up to ⌊(d − 1)/2⌋ physical errors, where d is the

distance for the code [46].

In a surface code built on only Zeeman qubits, this standard

syndrome extraction is all that is needed to detect and correct

errors. In a surface code built on only hyperfine qubits, a

LRC must be implemented to convert leakage errors into Pauli

errors.

The simplest method for implementing a LRC is to add

a SWAP gate at the end of the syndrome extraction circuit.

Data and syndrome qubits swap their roles and thus leaked

qubits get reinitialized at most every other cycle. Thanks to

gate identities, this amounts to adding one extra CNOT to the

error correction cycle (see Fig. 2). We refer to this LRC as the

SWAP-LRC.
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171
Yb

+ 174
Yb

+

FIG. 1. Mixed species surface code layout. Hyperfine (171Yb+)

ions are defined as syndrome qubits (white) and Zeeman (174Yb+)

ions are defined as data qubits (black). The two tones of diamonds

represents X and Z stabilizer measurements.

In our simulation, we assign the role of data qubits to the
174Yb+ Zeeman qubits and the role of syndrome qubits to
171Yb+ hyperfine qubits. Since data qubits cannot leak, there

is no need for a LRC. In fact, leaked qubits can live for at most

one error correction cycle. This is already an improvement

over the pure hyperfine system where leaked qubits can live

twice as long.

Furthermore, when a leaked qubit enters a CNOT gate, the

other qubit involved incurs some error, as dictated by the error

models discussed above. For a pure hyperfine system there are

potentially four such corrupt gates, because data qubits can

leak and leakage is not necessarily eliminated every cycle. For

the mixed species system, there are only three such corrupt

gates since only syndrome qubits can leak and we assumed

initialization does not cause leakage.

FIG. 2. Top circuit is the standard syndrome extraction circuit

for the surface code. The bottom circuit is the standard circuit with a

SWAP-LRC implemented at the end. Both the homogenous Zeeman

system and the mixed species system utilize the top circuit. The

homogenous hyperfine system requires the LRC to handle leakage

errors.

TABLE I. List of error probabilities caused by the first-order

Zeeman effect (174Yb+). σ is the standard deviation from the mean

magnetic field per two qubit gate in µG.

SD (µG) pM

σ = 100 7.75 × 10−3

σ = 32 7.75 × 10−4

σ = 10 7.75 × 10−5

σ = 1 7.75 × 10−6

While the advantages of the mixed species system over a

hyperfine system are immediately clear, they come at a cost.

While we no longer require a LRC to handle leakage errors,

we have effectively traded in half our leakage errors, which

vary with the scattering rate, for constant memory errors.

Still, memory errors manifest as Pauli Ẑ errors, which we can

correct without additional overhead and, compared to a pure

Zeeman system, the mixed species system will incur half the

memory errors due to the symmetry of the surface code.

V. RESULTS AND DISCUSSION

Implementing the two different error models for the hy-

perfine and Zeeman qubits discussed above, we examined the

performance of the surface code built on this mixed species

structure and compared it to the performance of the pure

hyperfine and Zeeman systems. In each simulation, we varied

the probability of a spontaneous scattering event (ps) while

applying a constant magnetic-field error probability (pM). We

simulated the effects of both the depolarizing and MS leakage

models and looked at a range of magnetic-field stabilities (see

Table I) to get a grasp on where the trade off between leakage

errors and memory errors might lie.

A. Leakage effects

In the depolarizing leakage model, a single leakage error

on a syndrome qubit can cause a two-qubit error chain by

depolarizing its neighboring data qubits. A distance d sur-

face code should be able to detect and correct ⌊(d − 1)/2⌋

physical errors. However, leakage produces a two-qubit error

chain from one physical error. This results in a distance d

code only being able to correct ⌊(d − 1)/4⌋ physical errors,

reducing the code’s effective distance by d/2 [15,40]; see

Fig. 3. For example, a distance d = 5 should be able to correct

two physical errors. But because of the damage depolarizing

leakage causes, this distance d = 5 behaves like a d = 3,

correcting only single qubit errors. In the hyperfine system,

these syndrome qubits then get swapped and reassigned as

data qubits. Leaked data qubits will corrupt syndrome qubits,

leading to measurement errors. This depolarizing leakage is

a worst case model, and might be overly pessimistic but it

serves to highlight the damage leakage can cause to quantum

error correction.

In the MS leakage model, leakage errors on syndrome

qubits can cause errors on data qubits that are of the same

type as that stabilizer. All potential error outcomes are either

a single-qubit or two-qubit error, up to a stabilizer. Thus any

⌊ d−1
2

⌋ physical error does not produce a logical error and the
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FIG. 3. Comparison of logical error rates for the DP leakage

model at distances 3 (black), 5 (light gray), and 7 (dark gray). The

solid and dashed colored lines with the squares points represent the

Zeeman and mixed species systems, respectively, stabilized to 10 µG

standard deviation from the mean magnetic field per two qubit gate.

The solid black line with the right triangle points represents the

hyperfine system with the SWAP-LRC implemented. The logical

error rate (pL) is proportional to p
⌈ d

2 ⌉

s for the Zeeman system and

p
⌈ d

4 ⌉

s for mixed species, and hyperfine systems.

effective code distance is maintained; see Fig. 4. Leakage er-

rors on data can produce many time correlated errors but they

will not produce any additional space correlated errors since a

leaked data qubit cannot spread errors to syndrome qubits that

will then propagate to other data qubits [40]. The MS leakage

model more accurately reflects the effects of leakage during an

MS gate and demonstrates the importance to leakage models

on the performance of quantum error correction.

In the mixed species system, there are less time and space

correlated errors for two reasons: leakage can only live for one

cycle, and leaked syndrome qubits never get swapped with

data qubits. This is independent of the leakage error model

used. So we expect the mixed species model to outperform

the hyperfine system if the memory errors can be suppressed.

FIG. 4. Comparison of logical error rates for the MS leakage

model at distances 3 (black), 5 (light gray), and 7 (dark gray).

The solid and dashed lines with the square points represent the

Zeeman and mixed species systems, respectively, stabilized to 10 µG

standard deviation from the mean magnetic field per two qubit gate.

The solid black line with the right triangle points represents the

hyperfine system with the SWAP-LRC implemented. The logical

error rate (pL) is proportional to p
⌈ d

2 ⌉

s for the Zeeman, mixed species,

and hyperfine systems.

For the depolarizing model (Fig. 3), syndrome qubit leak-

age is so damaging that the mixed species system, even

with half the potential for leakage errors, suffers a logical

error rate suppression proportional to ⌈ d
4
⌉ log(p). While

in certain magnetic-field regimes this removal of potential

leakage errors is enough to beat the hyperfine system, the

mixed species model will almost never be able to do better

than the Zeeman system in the same error regime. Having

half the memory errors is not enough to compensate for the

damage leakage can cause. Of course, this all rests on the

effects from the magnetic field, which we will discuss in detail

later.

For the MS model (Fig. 4), leakage is much less damaging

and we see every system behaves fault tolerantly. In this leak-

age model, the mixed species system has the lowest logical

error rate. It beats the hyperfine system for the same reasons

as the depolarizing model (i.e., less leakage and shorter lived

leakage) and it beats the Zeeman system because the structure

of the leakage errors imposed by the MS model makes leakage

errors more comparable to memory errors. In fact, leakage

errors are less damaging than two-qubit dephasing errors.

While they cause errors on other qubits, the structure of the

MS leakage model restricts these errors to be the same as

the stabilizer. In the Zeeman model, this is not true for all

syndrome; Z type syndrome qubits will have this advantage

but, for X type syndrome qubits, dephasing errors will cause

measurement errors. Because the mixed species system suf-

fers less of these dephasing errors, in no magnetic-field regime

will the pure Zeeman system outperform the mixed species

system.

B. Memory effects

For both leakage models, when the main source of error

arises from spontaneous scattering (ps > pM), we see an im-

provement in the logical error rate as the scattering probability

decreases. Once the scattering rate decreases below the static

memory error probability (ps < pM), the logical rate plateaus

as memory errors dominate. The hyperfine system is immune

to these memory errors and so its performance is the same for

every magnetic-field stability. Table I lists the values of the

static pM applied in our simulation.

The logical error rate of a distance-3 surface code using

the depolarizing leakage model can be seen in Fig. 5. When

pM > ps, the performance of the surface code is limited by the

amount of memory errors incurred. Since the Zeeman system

suffers the most from these errors, it has the worst logical error

rate of the three systems. The mixed species suffers half as

many memory errors and thus will always be better than the

Zeeman system but worse than the hyperfine system in most

of this regime.

When pM < ps, the performance of the surface code is

limited by the amount of leakage incurred. Since the hyperfine

system suffers the most from leakage, it has the worst logical

error rate. The mixed species code will always be better

than the hyperfine system but always worse than the Zeeman

system in this regime.

There is a small range when pM > ps in which the mixed

species system has the lowest logical error rate. In the de-

polarizing leakage model, leakage errors cause more damage

032325-5



NATALIE C. BROWN AND KENNETH R. BROWN PHYSICAL REVIEW A 100, 032325 (2019)

FIG. 5. Comparison of the different schemes for a distance-3

surface code using the depolarizing leakage model. The solid and

dashed colored (gray) lines represent the Zeeman and mixed species

systems, respectively. The solid black line with right triangle shows

the performance of the hyperfine system with the SWAP-LRC im-

plemented. The different symbols of the lines indicates the standard

deviation from the mean magnetic field per two qubit gate: 100 µG

(red triangle), 32 µG (green circle), 10 µG (blue square), and 1 µG

(purple diamond).

than memory errors. The hyperfine system not only has more

potential for leakage, it also has more fault locations due to the

extra gate needed for the SWAP-LRC. There is a small range

for ps, when the total probability of a logical error caused from

two leakage errors in the hyperfine system is higher than the

probability of a logical error caused by two leakage errors or

two memory errors in the mixed species system. When this

is true, the mixed species system outperforms the hyperfine

system.

The logical error rate of a distance-3 surface code using

the MS leakage model can be seen in Fig. 6. In this leakage

model, memory errors are more damaging than leakage errors.

Thus there is no magnetic-field regime in which the pure

Zeeman system will outperform the mixed species system.

When pM > ps, the hyperfine system will have the lowest

logical error rate.

FIG. 6. Comparison of the different schemes for a distance-3

surface code using the MS leakage model. The solid and dashed

colored (gray) lines represent the Zeeman and mixed species sys-

tems, respectively. The solid black line with the right triangle shows

the performance of the hyperfine system with the SWAP-LRC. The

different symbols of the lines indicates the standard deviation from

the mean magnetic field per two qubit gate: 100 µG (red triangle),

32 µG (green circle), 10 µG (blue square), and 1 µG (purple

diamond).

In fact, we have the opposite situation of the depolarizing

model: there is a small regime when ps > pM , in which the

probability of a logical error caused from two leakage errors

in the hyperfine system is lower than the probability of a

logical error caused by two leakage errors or two memory

errors in the mixed species system. Since memory errors are

more damaging, the stability of the magnetic field required to

suppress the memory errors in order to see an advantage in

using a Zeeman qubit is higher than when compared to the

depolarizing leakage model. For the errors we are interested

in, the magnetic-field stability for the Zeeman qubits becomes

stricter than our previous estimates with this error model [21].

For the ions considered, the total scattering probability

for a two qubit gate was calculated to be 2.52 × 10−4 [21].

In these calculations we assumed the gates were driven by

copropagating linearly polarized Raman beams with a laser

frequency of 355 nm and a two qubit gate time of 200 µs.

These parameters minimize spontaneous scattering and reflect

parameters used in recent experiments [47–50].

For this realistic total scattering probability (ps = 2.52 ×

10−4), in each leakage model there is a magnetic-field regime

where the mixed species outperforms both homogenous sys-

tems. For the depolarizing model, we can see this is a narrow

window near a stability of 32 µG. Below this value, the

homogenous Zeeman qubit yields better performance. For the

Mølmer-Sørenson leakage model, leakage is less damaging

and a lower memory error is required to outperform the

homogenous hyperfine qubit. Below 10 µG the Zeeman and

mixed species system outperforms the pure hyperfine system

with the mixed species providing a fractional improvement

over the Zeeman system corresponding to 1/2 and primarily

due to hyperfine qubits having a lower overall error rate from

scattering than Zeeman qubits. Zeeman qubits have already

been realized in fields stabilized to 10 nG, well below either

model’s requirement [51].

VI. CONCLUSIONS

In this work we have shown an advantage of mixing qubit

types together in order to limit the effects of leakage. The

advantage of using mixed species depends on the details of

how leaked qubits interact with qubits in the computational

subspace. There are other advantages that a mixed species

platform could provide.

In our simulations we did not take into account different

state preparation and measurement errors (SPAM) associated

with the two different types of qubits. Hyperfine qubits typi-

cally have less SPAM errors as they can be easily measured

reliably using state selective fluorescence [52,53]. For the

typical magnetic-field strengths used in ion trap quantum

computing, the frequency separation between the Zeeman

qubits states (typically 8.2–20 MHz) is smaller than the nat-

ural P level spectral width of 19.6 MHz [54]. State selective

fluorescence cannot be directly applied in this case and the

qubit must be first shelved to a different energy level before it

can be measured [26]. In our mixed species scheme, the qubits

that get measured often (syndrome) correspond to the qubits

that are easy to measure (hyperfine).

Another intrinsic advantage of the mixed species system is

its ability to limit crosstalk. Because the qubits are no longer
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identical, laser spillage on adjacent ions may no longer be a

problem. Here the isotopic separation only reduces crosstalk

but by using distinct species (e.g., Be+ and Ca+ [4,7], Mg+

and Be+ [6], and Yb+ and Ba+ [5]) crosstalk could be elim-

inated. Mixed species systems could also help with cooling

issues by allowing Doppler cooling without damaging the

data.

Our results also emphasize the importance of leakage

models. For the depolarizing leakage model, leaked syndrome

qubits are so damaging, a single physical leakage error leads

to a logical error. For the MS leakage model, the Pauli twirl

approximation gives a convenient result that makes syndrome

qubit leakage less dangerous than stochastic Pauli errors. The

way in which leakage is modeled can also determine which

surface code is best suited to handle the correlated errors

associated with leakage [40].

Finally, we note that our simulations are not optimized in

any way and there are several things that could be done to im-

prove the performance. For hyperfine qubits, our simulations

assumed leakage errors were undetectable. When leakage

was measured, it was projected into the |1〉 qubit subspace,

as motivated by selective state measurement techniques in

experiments [24]. If leakage could be detected, this infor-

mation would be valuable in distinguishing valid syndromes

from corrupt ones, ultimately leading to an improvement in

performance. For Zeeman qubits, the dominant dephasing

errors suggest using other codes, which have shown benefits in

the code capacity error model where memory errors dominate,

would be optimal. In this discussion we focus on suppression

errors through magnetic-field stability but one could also use

different codes [55–57]. The mixed qubit scheme shares all

the benefits the Zeeman qubits have. So we expect mixed

species to perform better on codes that are optimized for

Zeeman.

Our results show that the Zeeman and mixed species

systems will outperform the homogenous hyperfine system

for stable magnetic fields. For the depolarizing leakage er-

ror model, the homogenous Zeeman system outperforms the

mixed species systems except for a small region of parameter

space. For the MS leakage error model, the magnetic field

must be more stable, but the mixed species system outper-

forms the Zeeman system for all scattering error rates.

These results highlight the fact that syndrome leakage is

more dangerous than data leakage. It is natural to wonder why

we used hyperfine qubits as syndrome qubits and Zeeman as

data qubits and not the other way around. While syndrome

leakage is more damaging, the standard error correction cir-

cuit naturally removes leakage without the need to implement

any LRCs. If data leaks, while it might not be as damaging

in any given error correction cycle, something must be done

to remove it or else it will continue to wreak havoc. At the

circuit level, this means implementing an LRC. Adding a

SWAP-LRC at the end to reduce the data leakage would mean

the following error correction round would result in leaky

syndrome qubits. Reversing the roles of the hyperfine and

Zeeman qubits not only requires additional gates for the LRC,

it would also result in leakage living twice as long. Leaked

syndrome qubits would be able to live on as leaked data before

being removed.

The periodic boundary conditions of the toric code help

with the implementation of the SWAP-LRC. The periodicity

guarantees every qubit will have a qubit to swap with at the

end of the cycle. While such boundary conditions could be

implemented on modular architectures [58] and single ion

chains [42], the mixed species system is not restricted by

these boundary conditions and could be easily implemented

on any planar architecture suited for the surface code [59].

To implement the SWAP-LRC on a plane, additional qubits

could be added to the boundary and swapped up and down

every other cycle [16,60]

In our study, we did not consider any other LRC implemen-

tations. We chose to look at the SWAP-LRC since it requires

the least amount of overhead. We also did not consider any

physical methods for leakage removal, which could in practice

remove populations from the leaked qubit state. Our aim

was to demonstrate the effectiveness of a surface code with

leakage errors but no LRCs.

Leakage errors are a fundamental limiting error in ion

trap quantum computers made with hyperfine qubits. Even in

systems built on microwave gates [59,61,62], which do not

suffer from the spontaneous scattering effects, background gas

collisions can cause leakage. Leakage is a damaging error that

needs special consideration when designing new systems.

Memory errors are also a limiting error but pose a more

technical challenge. Improvements in field stability will fur-

ther suppress the rate of memory errors incurred on a system.

This is an active area of research where magnetic-field stabil-

ity continues to improve [63].

For near term experiments, we do not anticipate leakage

being the main source of error. The probability of leakage

errors is low. There is more technical noise to overcome before

we see the effects of leakage dominate. But when constructing

large scale fault tolerant devices, we must consider the trade

offs between overhead of handling such errors and mitigating

their effects through design. We expect to see many other

advantages for mixing qubit types in the future.
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